セキネ コウタ
Kouta Sekine
関根 晃太 所属 千葉工業大学 情報変革科学部 情報工学科 千葉工業大学 情報科学研究科 情報科学専攻 職種 准教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2017 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Estimation of Sobolev embedding constant on a domain dividable into bounded convex domains |
執筆形態 | 共著 |
掲載誌名 | Journal of Inequalities and Applications |
掲載区分 | 国外 |
出版社・発行元 | Springer Science and Business Media {LLC} |
巻・号・頁 | 2017(1),pp.1-18 |
著者・共著者 | Mizuguchi, M., Tanaka, K., Sekine, K., Oishi, S. |
概要 | This paper is concerned with an explicit value of the embedding constant from W-1,W- q(Omega) to L-p(Omega) for a domain Omega subset of R-N (N is an element of N), where 1 <= q <= p <=infinity. We previously proposed a formula for estimating the embedding constant on bounded and unbounded Lipschitz domains by estimating the norm of Stein's extension operator. Although this formula can be applied to a domain Omega that can be divided into a finite number of Lipschitz domains, there was room for improvement in terms of accuracy. In this paper, we report that the accuracy of the embedding constant is significantly improved by restricting Omega to a domain dividable into bounded convex domains. |
DOI | 10.1186/s13660-017-1571-0 |
ISSN | 1029-242X |
PermalinkURL | http://www.scopus.com/inward/record.url?eid=2-s2.0-85037051995&partnerID=MN8TOARS |