スガワラ シンジ
Shinji Sugawara
菅原 真司 所属 千葉工業大学 工学部 情報通信システム工学科 千葉工業大学 工学研究科 工学専攻 千葉工業大学 工学研究科 情報通信システム工学専攻 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2022 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Efficient In-advance Shared Content Deployment Method Using Popularity Prediction in Hybrid Peer-to-Peer Network with Cloud Storage |
執筆形態 | 共著 |
掲載誌名 | ITE Transaction on MTA |
掲載区分 | 国内 |
出版社・発行元 | ITE |
巻・号・頁 | 10(4),pp.225-233 |
総ページ数 | 9 |
担当区分 | 最終著者 |
著者・共著者 | Kazumasa Takahashi, Shinji Sugawara |
概要 | In content sharing with Peer-to-Peer (P2P) network systems, content has been smoothly acquired and pre-vented from being lost by replication of the content and deploying replicas on multiple peers. However, in some conventional methods, it takes a long time for the replicas of content to be spread over the network, which makes stable content sharing difficult. In this paper, we propose a method to predict the change in popularity of each content item over time and to deploy an appropriate number of replicas of popular content evenly on the network before the supply becomes insufficient. The method also keeps the ratio of each content replica’s total stored capacity to the whole storage capacity in P2P in proportion to its demand, while considering each replica’s size of capacity. Furthermore, we confirm the effectiveness of the proposed method by computer simulations. |